61,481 research outputs found

    Dynamic modeling of spacecraft in a collisionless plasma

    Get PDF
    A new computational model is described which can simulate the charging of complex geometrical objects in three dimensions. Two sample calculations are presented. In the first problem, the capacitance to infinity of a complex object similar to a satellite with solar array paddles is calculated. The second problem concerns the dynamical charging of a conducting cube partially covered with a thin dielectric film. In this calculation, the photoemission results in differential charging of the object

    SWKB Quantization Rules for Bound States in Quantum Wells

    Get PDF
    In a recent paper by Gomes and Adhikari (J.Phys B30 5987(1997)) a matrix formulation of the Bohr-Sommerfield quantization rule has been applied to the study of bound states in one dimension quantum wells. Here we study these potentials in the frame work of supersymmetric WKB (SWKB) quantization approximation and find that SWKB quantization rule is superior to the modified Bohr-Sommerfield or WKB rules as it exactly reproduces the eigenenergies.Comment: 8 page

    Quasideterminants

    Get PDF
    The determinant is a main organizing tool in commutative linear algebra. In this review we present a theory of the quasideterminants defined for matrices over a division algebra. We believe that the notion of quasideterminants should be one of main organizing tools in noncommutative algebra giving them the same role determinants play in commutative algebra.Comment: amstex; final version; to appear in Advances in Mat

    Renormalization Group Treatment of Nonrenormalizable Interactions

    Full text link
    The structure of the UV divergencies in higher dimensional nonrenormalizable theories is analysed. Based on renormalization operation and renormalization group theory it is shown that even in this case the leading divergencies (asymptotics) are governed by the one-loop diagrams the number of which, however, is infinite. Explicit expression for the one-loop counter term in an arbitrary D-dimensional quantum field theory without derivatives is suggested. This allows one to sum up the leading asymptotics which are independent of the arbitrariness in subtraction of higher order operators. Diagrammatic calculations in a number of scalar models in higher loops are performed to be in agreement with the above statements. These results do not support the idea of the na\"ive power-law running of couplings in nonrenormalizable theories and fail (with one exception) to reveal any simple closed formula for the leading terms.Comment: LaTex, 11 page

    Evaluation of the hazard from exposure to electron irradiation simulating that in the synchronous orbit

    Get PDF
    The electron spectrum predicted for the synchronous orbit was simulated to determine the effects that might occur to astroscientists exposed to such irradiation while on a prolonged space station mission in that region. Miniature pigs were exposed to monoenergetic and spectral-fractionated irradiations with 0.5 to 2.1 MeV electrons. Clinical and pathological alterations observed in biopsies were correlated with depth-dose pattern and length of post irradiation period up to one year. With monoenergetic electrons, the lowest dose causing a recognizable lesion was 1450 rad and with increasing dose lesions appeared earlier and were more severe. At the highest dose given, 2650 rad, ulceration extending into the dermis was present by twenty one days and required about four months for complete healing. Spectral-fractionated irradiations, in which the total dose range was essentially comparable to that of the monoenergetic series, resulted in very minimal outer dermis edema at 1790 rad and at no dose employed did necrosis of epidermis or ulceration into dermis occur

    Profinite completion of Grigorchuk's group is not finitely presented

    Full text link
    In this paper we prove that the profinite completion G^\mathcal{\hat G} of the Grigorchuk group G\mathcal{G} is not finitely presented as a profinite group. We obtain this result by showing that H^2(\mathcal{\hat G},\field{F}_2) is infinite dimensional. Also several results are proven about the finite quotients G/StG(n)\mathcal{G}/ St_{\mathcal{G}}(n) including minimal presentations and Schur Multipliers

    Nonlinear nanomechanical resonators for quantum optoelectromechanics

    Full text link
    We present a scheme for tuning and controlling nano mechanical resonators by subjecting them to electrostatic gradient fields, provided by nearby tip electrodes. We show that this approach enables access to a novel regime of optomechanics, where the intrinsic nonlinearity of the nanoresonator can be explored. In this regime, one or several laser driven cavity modes coupled to the nanoresonator and suitably adjusted gradient fields allow to control the motional state of the nanoresonator at the single phonon level. Some applications of this platform have been presented previously [New J. Phys. 14, 023042 (2012), Phys. Rev. Lett. 110, 120503 (2013)]. Here, we provide a detailed description of the corresponding setup and its optomechanical coupling mechanisms, together with an in-depth analysis of possible sources of damping or decoherence and a discussion of the readout of the nanoresonator state.Comment: 15 pages, 6 figure

    Quantum state preparation and control of single molecular ions

    Full text link
    Preparing molecules at rest and in a highly pure quantum state is a long standing dream in chemistry and physics, so far achieved only for a select set of molecules in dedicated experimental setups. Here, a quantum-limited combination of mass spectrometry and Raman spectroscopy is proposed that should be applicable to a wide range of molecular ions. Excitation of electrons in the molecule followed by uncontrolled decay and branching into several lower energy states is avoided. Instead, the molecule is always connected to rotational states within the electronic and vibrational ground-state manifold, while a co-trapped atomic ion provides efficient entropy removal and allows for extraction of information on the molecule. The outlined techniques might enable preparation, manipulation and measurement of a large multitude of molecular ion species with the same instrument, with applications including, but not limited to, precise determination of molecular properties and fundamental tests of physics.Comment: 12 pages, 2 figures, reformatted for resubmissio
    corecore